

EUROPEAN HEMATOLOGY ASSOCIATION

Xinfeng Chen¹, Yu Ping¹, Ling Li¹, Lei Zhang¹, Xudong Zhang¹, Jianmin Huang¹, Martina Sersch², Dan Song², Hongmei Wang², Lianjun Shen², Wei Zhao², Wenjie Yin², Hua Zhang², Mingzhi Zhang¹, Yi Zhang¹ ¹ The First Affiliated Hospital of Zhengzhou University, Zhengzhou | ² Gracell Biotechnologies Ltd, Shanghai, China

BACKGROUND

- Relapse due to antigen escape remains a challenge for CD19directed chimeric antigen receptor T (CAR-T) cell therapy in B cell malignancies including B-cell non-Hodgkin's lymphoma (B-NHL).
- To optimize the depth and duration of response in r/r B-NHL, a dual targeting approach could be beneficial
 - Data suggest that 39% to 97% clinical samples of B-NHL cells express BCMA
- GC012F is a CD19/BCMA dual-targeting CAR-T therapy manufactured on the novel FasT CAR-T platform enabling nextday manufacturing currently in development for multiple myeloma.
- Here, we report the *in vitro* and *in vivo* preclinical data and the preliminary clinical results of the dose escalation study of GC012F in r/r B-NHL (ChiCTR2100047061)

Figure 1. In Vitro and In Vivo Pharmacologic Activity of GC012F

GC012F completely eradicated xenografts in NOG-dKO mice s.c. inoculated with JeKo-1, Raji, or SU-DHL-6 tumor cells.

EHA2022

First-in-Human Study of CD19/BCMA Dual-Targeting FasT CAR-T GC012F for Patients with Relapsed/Refractory B-Cell Non-Hodgkin's Lymphoma

METHODS

Study Design

Single-center, open label, single-arm investigator-initiated study (N=9-18) Key inclusion criteria

- Male or Female between 18 to 75 years
- r/r B-NHL with CD19+ and/or BCMA+ expression
- At least one measurable tumor focus: the longest diameter of nodular lesions ≥ 1.5 cm, and the longest diameter of extra-nodal lesions ≥ 1.0 cm (per 2014 Lugano)
- Expected survival \geq 3 months

• ECOG≤2

Endpoints

- Primary endpoint:
- Dose limiting toxicities (DLTs) within 28 days
- Adverse events
- Second endpoints:
- Objective response rate (ORR, measured by CR+PR) within 90 days
- Progression free survival (PFS), Overall survival (OS) and duration of
- remission (DOR)
- Pharmacokinetics (PK) of GC012F CAR-T cells

Figure 2. Study Design for ChiCTR2100047061

Enrollment Apheresis La (Da	Sympho- epletion ay -5 to -3)GC012F infusion 		
GC012F Dose Escalation	Dose		
Dose Level -1	0.5-1 x 10 ⁵ CAR ⁺ T cells/kg		
Dose Level 1 (initial dose)	2-3 x 10 ⁵ CAR ⁺ T cells/kg		
Dose Level 2	4-6 x 10 ⁵ CAR⁺ T cells/kg		
Dose Level 3	8-12 x 10 ⁵ CAR ⁺ T cells/kg		
Lymphodepletion regimens	Dose		
Fludarabine	25-30mg/m ² /day x 3 days		
Cyclophosphamide	250-300mg/m ² /day x 3 days		

Table 1. Patient Demographics and Disease Characteristics

Characteristic	n = 3
Median age, years (range)	52 (31-60)
Lymphoma subtype, n (%) DLBCL	3 (100)
¹ Disease stage, n (%) IV	3 (100)
ECOG 1, n (%)	3 (100)
Anti-CD20	3 (100)
Immuno-phenotype, n (%) CD19 BCMA	3 (100) 2 (67)
Median prior lines of therapy, n(range)	2 (2-3)
IPI score \geq 3, n (%)	2 (67)
Relapse/refractory subgroup, n (%) Relapse Refractory	2 (67) 1 (33)
Prior auto-SCT, n(%)	0 (0)

¹According to Ann Arbor stage.

ECOG, Eastern Cooperative Oncology Group; IPI, International Prognostic Index

Pt 01	2.0 x 10 ⁵ /kg	55222
Pt 02	3.7 x 10 ⁴ /kg	89120
Pt 03	3.0 x 10 ⁵ /kg	90174

CAR-T expansion was observed in all doses administered

RESULTS

Figure 5. Pt 03 Case Report

- 31-year-old male with R/R DLBCL
- 2 prior lines of therapy
 R-CHOP: response unknown
 R-CODOX-M: PD
- Dose: 3x10⁵ CAR⁻ T cells/kg body weight
- CRS Gr 3 , no ICANs

Target lesion: Axillary lymph node 12.2 cm x 8.9 cm

Assessed CR at day 28

CONCLUSION

- First-in-human data CD19/BCMA dual CAR-T therapy for r/r B-NHL
- In preclinical studies GC012F demonstrated a more robust proliferation and a younger phenotype than conventional CAR-T *in vitro* and effective tumor killing activity in animal models
- CAR-T expansion was observed in all treated patients
- Early clinical data demonstrate a favorable safety profile to date in three different dose levels
- Gr1 CRS:2/2 in doses 3.7x10⁴/kg and 2x10⁵/kg
- Gr3 CRS: 1/1 in dose level 3x10⁵/kg reverted to grade 2 within 2 days
- No grade 4/5 No ICANS in any dose level
- High response rate

- Potent and fast activity with 100% CR rate at 1-month observed in all three pts with r/r B-NHL (DLBCL) including pts with bulky disease

The study continues enrolling patients

ACKNOWLEDGEMENTS

We would like to thank the patients, their families, the investigators and all the caregivers involved in this study and Gracell Biotechnologies for providing FasT CAR[™] GC012F.

CONTACT INFORMATION

E-mail: Dr. Xinfeng Chen: fengxinchen1985@163.com

